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In  this paper we consider the flow field induced in an incompressible viscous 
conducting fluid in a hemispherical bowl by a symmetric discharge of electric 
current from a point source a t  the centre of the plane end of the hemisphere. This 
plane end is a free surface. We construct an analytic solution for the slow viscous 
flow and a numeriacl solution for the nonlinear problem. The streamlines in an 
axial cross-section form two sets of closed loops, one on either side of the axis. 
Our computations indicate that, for a given fluid, when the discharged current 
reaches a certain magnitude the velocity field breaks down. This breakdown 
probably originates at the vertex of the hemispherical container. 

1. Introduction 
In  some processes in arc welding and electrochemistry an electric current is 

passed through a conducting fluid. The current usually enters the fluid through a 
small area and diverges into the fluid. The Lorentz force due to this current and 
the associated magnetic field is rotational and sets the fluid in motion. In  an 
attempt to gain insight into the structure of the flow field for this problem several 
authors have considered the case of an electric current discharged radially from a 
point source on a plane interface into a fluid extending to infinity. Thus Lundquist 
(1969) considered the linear problem (slow viscous flow), whereas Shercliff (1970) 
considered the nonlinear inviscid problem. Sozou (1 971) considered the nonlinear 
viscous problem and Sozou & English (1 972) investigated the case where there is 
interaction between the velocity and the electromagnetic field. Sozou & Pickering 
(1976) considered the development of the flow field in the nonlinear viscous 
problem. From all these studies it turns out that the flow field has a jet-like 
structure, similar to that of the momentum jet emerging from a hole of a plane 
bounding a semi-infinite fluid (Squire 1952). For a given fluid the nonlinear 
viscous velocity field breaks down when the discharged current exceeds a certain 
magnitude. 

The above studies refer to the case where the fluid extends to infinity whereas 
in practical problems, for example electromagnetic stirring in a weld pool 
(Kublanov & Erokhin 1974), the flow takes place in a container which can be 
approximated by a hemispherical bowl. The current is discharged into the pool 
from the centre of the free surface and in the symmetric case the streamlines in 
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an axial cross-section form two sets of closed loops, one on either side of the axis. 
The purpose of this paper is to investigate symmetrical electromagnetic stirring 
in a hemispherical pool. We are able to produce an analytic solution for the case 
of slow viscous flow. In  the case of the nonlinear problem our equations are of 
mixed type and we construct a numerical solution. 

2. Equations of the problem 
We consider a hemispherical bowl of radius Q full of incompressible conducting 

fluid of density p and kinematic viscosity v. The plane boundary of the fluid is a 
free horizontal surface. At the centre of the plane boundary there is a current 
source supplying to the fluid region an electric current J,. The source is usually 
the end of a wire, perpendicular to the plane of the free surface, from which 
current is discharged into the fluid. We use spherical polar co-ordinates ( r ,  8, $) 
with the origin a t  the current source and the axis 8 = 0 along the axis of the bowl. 
Thus the fluid occupies the region 0 < 8 < an, r Q a and the free surface corre- 
sponds to 8 = in. If we assume that the current density j is purely radial and 
ignore the effect of the velocity field on the electromagnetic variables we can show 
that 

j = FJo/2nr2. (11 

(2) 

The associated magnetic field B is given by 

B = 4 x 2 4 ( 1  - -p) / r ( i  -p2)t, 

where p = cos8, The velocity field v is symmetric about the axis 8 = 0 and in 
terms of a stream function g+ is given by 

It was shown by Sozou (1971) that, on dimensional grounds, when the fluid 
extends to infinity the appropriate form for $ is vrgo (p), where go is a funct.ion to 
be determined. In  the present configuration it is convenient to set 

$ = vrg(p,h), (4) 

where h = r/a. ( 5 )  

v = ( - v/r) [SPY (9 + hgn)/(l - P 2 h  01, (6) 
Thus (3) becomes 

where a suffix h or p indicates partial differentiation with respect to that variable. 
On taking the curl of the steady-state momentum equation 

pv.Vv = -Vp+jxB-vpVxVxv,  (7) 

(8) 

and making use of (I) ,  (2), (5) and (6), after a little algebra we obtain 

(1 - P 2 ) f p p -  4&+ AYnn - W A  - K/(1 +PI = 3fs ,  +9fF + ~ ( f p 9 n - f n S J 2  

where p denotes the pressure, K = 2 4 / n p v 2  and 
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Equations (8) and (9) are the fundamental equations of our problem. We note 
that at r < a, that is, in the limit when A + O , g ( p ,  0) = go@) and (9) becomes 
f = g,", where a prime denotes differentiation. Equation (8) then becomes 

(1 -p2)gF - 4~9:  - K/(  1 +p) = 3g,"g, + gg;. 

9:- 2(1 -,U2)gh- 4pg0 = K[a,U2 +bp + C  - (1 +p)210g (1 +,%)I, 

(10) 

(11) 

When (10) is integrated three times we obtain (Sozou 1971) 

where a, b and c are constants of integration. 
Equations (8) and (9) must be solved under the following boundary conditions: 

g ( L 4  = 0,  g(p, 1) = 0, g,(p, 1) = 0, (12)-(14) 

g(0, 4 = 0, gJ0, 4 = 0, (151, (16) 

9(P, 0)  = SO(P), f (P, 0 )  = go", (17), (18) 

-4f,+h2f,,-2hfn-~K = 3fg,-hf,g, on p = 1. (19) 

Wenotethatg(1,h) = Oimpliesg,(l,h) = O , g ( O , h )  = Oimpliesg,(O,h) = Oand 
g(y, 1) = 0 implies g,(p, 1). Equation (12), in conjunction with g,(l, A )  = 0, 
expresses the fact that v is finite on p = 1. Equations (13) and (14) imply that 
v = 0 on the curved surface of the hemisphere ( A  = 1 or r = a) ,  whereas (15) 
means that at the free surface v is tangential. Equation (16) represents the 
condition that a t  the free surface the shear viscous stress is zero. At the free 
surface we must also have continuity of the normal stress. This is achieved by a 
suitable deformation of the free surface. Since it is assumed that the free surface 
is plane, validity of the solution requires that the deformation be small. Thus, for 
small deformations, continuity of the normal stress is used to obtain the shape 
of the free surface. Equation (19) is derived from (8), in conjunction with (12), 
and expresses the fact that f,, is finite on p = 1. 

In order to evaluate the right-hand sides of (1 7) and (1 8) we must determine 
the constants a, b and c occurring in (11). When (15) and (16) are applied at 
h = 0 we obtain b = 1. Since go (1) = 0, the left-hand side of (1 1) has a double 
zero a t  p = 1 and thus so must its right-hand side, that is we must have 

a+b+~-41og2 = 0, 2a+b-4log2-2 = 0. 

Thus a = ++2log2, b = 1 and c = -Q+2log2. 
In  order to solve (1 1) we follow Sozou (1971), that is we set 

go = -2(1-p2)u1/u (20) 

and thus transform (11) into 

Equation (21) is solved by forward integration subject to the conditions u(0) = 1 
and d ( 0 )  = 0. The coefficient of u on the right-hand side of (21) is negative for 
all 0 < p < 1 and thus when K is sufficiently large, say K = Kcrit, u(1) = 0, that 
is go( l )  + 0. When K = Kcrit we have velocity breakdown near the current 
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source along the axis p = 1. We find that for the configuration studied here 
Kcrit = 94-1. In  view of this breakdown near the current source we cannot solve 
(8) and (9) for values of K exceeding 94-1. It is quite possible that a value of 
K -= 94.1 may cause velocity breakdown away from the source and near the solid 
boundary. This value, if it  exists, must be determined from the complete solution 
of (8) and (9). 

3. The linear problem 
Equations (8) and (9), under the boundary conditions (12)-(19), are very 

complex and it is obvious that they must be solved numerically. Fortunately we 
can construct an exact solution of this problem for the case where the inertia 
terms in the momentum equation, that is the terms on the right-hand side of (€9, 
are negligible. In  this case, of course, the function go occurring on the right-hand 
sides of (17) and (18) must be constructed from (10) or (11) by neglecting their 
nonlinear terms. Here it is convenient to work explicitly in terms of g only, 
instead off and g, and express the curl of (7), namely 

(22) V x  V x V x  v = V x ( j  x B)/vp, 

as 

The solution of (23) that satisfies (15) and has the appropriate singularity at the 
origin is given by 

2g/K = h(p) + (1 -p2) 5 [Az,h2"+CZnh2n+2]P~n(~), (24) 

where W p )  = ( l+1U)log( l+~u)+ApU2+Cp,  (25) 

It= 1 

A ,  C, A,, and C,, are constants to be determined and P,,(p) is the Legendre 
polynomial of degree 2n. 

Equations (12) and (1 6) give 

2log2+A+C = 0, 1+2A = 0, 

respectively. Thus A = -4, C=$-21og2. (26) 
In  order to  be able to satisfy (13) and (14) we must express h(p),  over the interval 
0 < ,LL < 1, in the form 

00 

' ( P )  = 11 -p2) C a2nPin (PI* (27) 

Wedefine h ( , a ) = - ( l - p ) l o g ( l - p ) - A , u 2 + C p ,  - 1  < p <  0. (28) 

1 

On taking account of the orthogonality properties of the functions (1 -p2) Pk (p) 
over the interval ( -  1,l) and substituting in (25) and (28) the values of A and 
C given by (26), we obtain 

Applying the boundary conditions (13) and (14) to (24), with It&) given by (27), 
we obtain 

= - (n+ 1)aZn, cz, = na2, 
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FIGURE 1. Streamlines of the velocity field represented by (30). 
The numbers on the curves are values of lOOOyF/vK. 

and thus 

a2n + Azn h2n + C2, h2n+2 = aZn ( 1 - ha)z ( 1 + 2h2 + 3h4 + . . . + nh2"-2). 

Since P2 (0) = - + and, for n 2 2, PZn (0) = - (1 - (2n)-l) P2n-2 (0) ,  a2" converges 
very rapidly and we need calculate only the first few terms occurring in the 
expression for g. If we make use of (27) and terminate (24) at n = 4, after a little 
algebra we obtain 

5 3  
96 2560 

@/K = vr(l-h2)2p(1-p2) ---(1+2h2) (7pa-3) 

(1 + 2h2 + 3h4 + 4 P )  
17 

2 359296 
l3  (1 + 2h2 + 3h4) (33p4- 3 0 p +  5) - - +- 86 016 

x ( '715 ,~~- lOOlp~+385p~-35)  . (30) I 
Streamlines of the velocity field represented by (30) are shown in figure 1. As 
expected the streamlines form two groups of closed loops, one on either side of 
the axis p = 1. 

The radial component of (7), for the case where the inertia terms are negligible, 
after a little algebra gives 

2 = * [ 1 - 2 p +  c m 4n(2n+1)(4n+3)C,nX2n+2P2n(p)], (31a) 

ar 21.3 n- 1 

or -- '2J -- 2v2pK 5 n2(2n+1)[-2n- l+(4n+3)h2n+2]a2nP2n(p). (31b) 
ar 1.3 12-1 

Hence, apart from an additive constant, 

or 
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Equation (31a) is obtained when we use in (24) the form of h(p) given by ( 2 5 )  
and (31b) is obtained when we use the form of h(p) given by (27). We can also 
transform (31 a )  into (31 b )  by expanding 1 - 2,u over the interval (0 , l )  as a series 
of Legendre polynomials of even degree. 

At the free surface the normal hydrodynamic stress 

(33) 

must be balanced by the surface tension of the suitably deformed surface, that 
is, a t  the free surface, we must satisfy the equation 

+ T(ql  + r;l) = 0. (34) 

Here T is the surface tension and r, and r2 are the principal radii of curvature a t  
a general point of the free surface. On ,u = 0 

v.F+a(v.6)/ae = 0, r;l+r;l = 0. 

Thus on ,u = 0, 

It can be shown that for 0 6 h < I the right-hand side of (35) is positive. Thus, for 
equilibrium, we must appiy to the surface ,u = 0 an outward normal stress. In  the 
absence of this externally applied stress, the surface ,u = 0 will be depressed near 
r = 0, wherepeB is maximum. This is in agreement with experimental observation 
(Kublanov & Erokhin 1974). 

If the depression (or elevation) z of the free surface from the plane ,u = 0 
satisfies the condition 1x1 < a, then z can be calculated as follows. We set 

x = uH(w), (36) 

where w is the distance of the point on the free surface from the axis ,u = & 1. 
Since 1z[ < a, we must have /HI < 1 and then (34) and (35) give 

(37) or 

where c = -H(O).  On integrating (38) twice, subject to the conditions H'(0) = 0 
and H(0) = -c, we obtain 

(39) 
Since the fluid is incompressible we must have 

/olrH(x)dz = 0. 
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C 0.200 0.100 0.050 0.020 0.010 0.006 
S 0.707 0.184 0.054 0.013 0.0045 0.0017 

TABLE 1. Values of s = vapK/aT for various c = -H(O) 

After a little manipulation, which also involves reversing the order of integration 
in a repeated integral, (40) reduces to 

where s = v2pK/aT = 2Ji /mT.  Given s we must solve (41) for c. Then sub- 
stitution in (39) specifies H .  It is, of course, a straightforward matter to solve 
the inverse problem, that is specify c and obtain s from (41). This we have done 
and some of our results are shown in table 1. 

4. Numerical solution of the nonlinear problem 

Within the domain of interest (0 < p < 1, 0 < A < 1), for a given g, (8) is an 
elliptic equation in f and, for a given f, (9) is elliptic in g. We note that g is pre- 
scribed on the boundary and that in addition we must satisfy the conditions 
g,(,u, 1) = 0 and g,,(O,A) = 0 [(14) and (IS)]. It would thus appear that, in the 
case of (9), g is overspecified on h = 1 and onp = 0. This is, however, compensated 
for by the fact that there are no explicit conditions forf(p, 1) and f(0, A) .  Thus 
the conditions g ,  (p, 1) = 0 and g,,(O, A )  = 0 can be satisfied by a suitable choice 
of f ( p ,  1) and f(0, A) .  For example, if we solve (8) for f under the condition 
f(0, A )  = 0 and then, using the values off, solve (9) for g under the condition 
g(0, A )  = 0,  the condition g,,(O, A )  = 0 will be satisfied automatically. 

Equations (8) and (9) become parabolic on the part of the boundary where 
p = 1 and on A = 0. Equations of a similar form have been tackled numerically 
by Sozou & Pickering [1975; their equations (6) and (7)]. Here we employ the 
same numerical techniques, which we briefly outline below. 

so that (8) becomes 
We set 11 = (1-P)+ (42) 

(2-112)F,g+(2AG,+2G+6- 772)F,/7+4A2F,, 
- 2 h ( G , , / ~ + 4 ) F ~ + 6 C g F / ~  = 4K/(2-q2), (43) 

where F(7, A )  = f(  1 - r2, A )  and G(q, A) = g(  1 - q2, A) .  Equation (43) is elliptic 
throughout the region of interest (0  < 11 < 1, 0 < A < 1) and the boundary 
conditions for the solution of (43) are 

P(11, 0)  = g:(P)> 

P,(O,h)= 0, P(1,h) = 0. (4% (47) 
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p l  

p= 1 

p=l  

FIUURE 2. Streamlines for the nonlinear problem in half of an axial cross-section. The 
numbers on the curves are values of 1000$/vK. (a )  K = 10. (b )  K = 15. ( c )  K = 17. 
(d )  K = 18.5. 

Equation (44) follows immediately from ( 18), (45 a) is derived from ( 9) using ( 14), 
and (45b) is the limiting form of (45a) as p-+ I. Equation (47) follows from (9) 
using (15) and (16); (46), together with the requirement that as q + O  

4/17 = q q ,  G,h = G?l?p (481, (49) 

replaces (19) and represents the condition that the partial derivatives off and g 
with respect to ,u are finite on ,u = 1. 

Equation (9) can also be transformed into the q,h plane but in view of its 
relative simplicity and the fact that it  is completely elliptic within the region of 
interest i t  was tackled in the original ,u, h plane. Equations (14) and (16) were 
satisfied by assuming 

g(,u, 1 - 6 4  = Q ( W g m  g@,u, 4 = (&)g, (5019 (51) 

and using these as boundary conditions; that is we solved (9) in the region 
6,u < ,u < 1, 0 < h < 1 -ah, estimating g on 1 - Sh and on 8,u from (50) and (61), 
respectively. 
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WK 
0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 

1.009 
0.994 
0.929 
0.824 
0.690 
0.539 
0.383 
0.236 
0.114 
0.030 

10 

1.105 
1.226 
1.162 
1.035 
0-867 
0-677 
0.480 
0.297 
0.144 
0.038 

15 

1.167 
1.523 
1.495 
1-350 
1-137 
0.888 
0.632 
0-390 
0.189 
0-050 

17 

1.195 
1.792 
1.843 
1.704 
1.454 
1.145 
0.818 
0.507 
0.246 
0.065 

18.6 

1.216 
2.292 
2.692 
2-715 
2.457 
2.013 
1.477 
0.933 
0.457 
0.121 

TABLE 2. Values of - lOg,/K along the axis p = 1 for the nonlinear problem 

Equations (9) and (43) were solved iteratively by successive over-relaxation 
as follows. We specified an initial approximation to g and used (45) to estimate 
P(7,l). Equation (43) was then solved for F. This solution was substituted in 
(9), which was then solved for a better approximation to g .  This solution for g 
was used for a new estimate of P(q, 1) from (45) and for constructing an improved 
solution for F to be used in a new approximation:to g and so on. For each iteration 
the left-hand sides of (50) and (51) were estimated by using the values of gAA and 
g ,  obtained from the preceding iteration. This process was repeated until con- 
vergence, that is until mesh-point values of F and g for two successive iterations 
changed by less than 1 %. The numerical techniques used for the expression of 
(9) and (43) as fmite-difference equations were very similar to those employed by 
Sozou & Pickering. The step length in both the h and q direction was 0.06. 

5. Results and discussion 
We have computed the flow field for the nonlinear problem for several values 

of K .  Some of our results are shown in figure 2 and table 2. Figure 2 shows stream- 
lines for the cases K = 10,15,17 and 18.6. Table 2 shows values of qJK along the 
axis ,u = 1 for the cases K = 1, 10, 15, 17 and 18.5. If 4 and gn denote the value 
of g obtained from the solutions of the linear and nonlinear problems, respectively, 
and we define R = gn/$, we find that for a given h and K ,  R attains its greatest 
value on ,u = 1. As K+O, R-t 1 as expected. BR/aK > 0, though when K is of 
order unity the nonlinear flow field is indistinguishable from the linear one, 
which is shown in figure 1. 

In  the linear case 
8g/ah = a($/vr)/aA = 0 at h = 0, 

as can easily be seen from (30); that is, for a given direction ,u, g is greatest a t  the 
origin. In  the nonlinear problem, as K increases so does g/K and the value of h 
at which it reaches its greatest value in a given direction. For example, when 
K = 1 the maximum value of IgL[ on ,u = 1 occurs at h = 0.05. 

As K increases from unity there is an accelerating increase in the value of 
Ig,l/K and the nonlinearities of the problem become more pronounced, especially 
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at some distance from the origin, as can easily be verified by inspection of table 2. 
It is particularly noticeable in table 2 that, onp  = 1 for h > 0.4, as K increases 
from 15 to 17, that is, by about 13 %, there is an increase in the value of Ig,l/K 
of the order of 30 %, whereas when K increases from 17 to 18-5, that is, by about 
9 %, the value of Ig,l/K increases by more than 70 %. Since v . F = - vgJr and 
v = 0 at h = 1, ,u = 1, this accelerating increase (with respect to K )  in the value 
of Ig,l must soon lead to a very steep velocity gradient at h = 1, ,a = 1, which 
will cause velocity breakdown. It would be very difficult to estimate precisely 
the value of K ,  say Kc, that gives rise to velocity breakdown a t  the vertex of 
the container but we suspect that it satisfies the condition 18-5 < Kc < 20. 
We must finally draw attention to the fact that not all the discharged current 
is used to drive the velocity field and thus, in practice, i t  is quite probable 
(Sozou 1974) that a current J, larger than that given by Kc = 2Jg/7ipv2 is 
required to produce a velocity breakdown at h = 1, p = 1. 

We are indebted to Mr D. J. Mullings for computing assistance. 
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